12480X^2-1300000X-1927800=0

Simple and best practice solution for 12480X^2-1300000X-1927800=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12480X^2-1300000X-1927800=0 equation:


Simplifying
12480X2 + -1300000X + -1927800 = 0

Reorder the terms:
-1927800 + -1300000X + 12480X2 = 0

Solving
-1927800 + -1300000X + 12480X2 = 0

Solving for variable 'X'.

Factor out the Greatest Common Factor (GCF), '40'.
40(-48195 + -32500X + 312X2) = 0

Ignore the factor 40.

Subproblem 1

Set the factor '(-48195 + -32500X + 312X2)' equal to zero and attempt to solve: Simplifying -48195 + -32500X + 312X2 = 0 Solving -48195 + -32500X + 312X2 = 0 Begin completing the square. Divide all terms by 312 the coefficient of the squared term: Divide each side by '312'. -154.4711538 + -104.1666667X + X2 = 0 Move the constant term to the right: Add '154.4711538' to each side of the equation. -154.4711538 + -104.1666667X + 154.4711538 + X2 = 0 + 154.4711538 Reorder the terms: -154.4711538 + 154.4711538 + -104.1666667X + X2 = 0 + 154.4711538 Combine like terms: -154.4711538 + 154.4711538 = 0.0000000 0.0000000 + -104.1666667X + X2 = 0 + 154.4711538 -104.1666667X + X2 = 0 + 154.4711538 Combine like terms: 0 + 154.4711538 = 154.4711538 -104.1666667X + X2 = 154.4711538 The X term is -104.1666667X. Take half its coefficient (-52.08333335). Square it (2712.673613) and add it to both sides. Add '2712.673613' to each side of the equation. -104.1666667X + 2712.673613 + X2 = 154.4711538 + 2712.673613 Reorder the terms: 2712.673613 + -104.1666667X + X2 = 154.4711538 + 2712.673613 Combine like terms: 154.4711538 + 2712.673613 = 2867.1447668 2712.673613 + -104.1666667X + X2 = 2867.1447668 Factor a perfect square on the left side: (X + -52.08333335)(X + -52.08333335) = 2867.1447668 Calculate the square root of the right side: 53.545725943 Break this problem into two subproblems by setting (X + -52.08333335) equal to 53.545725943 and -53.545725943.

Subproblem 1

X + -52.08333335 = 53.545725943 Simplifying X + -52.08333335 = 53.545725943 Reorder the terms: -52.08333335 + X = 53.545725943 Solving -52.08333335 + X = 53.545725943 Solving for variable 'X'. Move all terms containing X to the left, all other terms to the right. Add '52.08333335' to each side of the equation. -52.08333335 + 52.08333335 + X = 53.545725943 + 52.08333335 Combine like terms: -52.08333335 + 52.08333335 = 0.00000000 0.00000000 + X = 53.545725943 + 52.08333335 X = 53.545725943 + 52.08333335 Combine like terms: 53.545725943 + 52.08333335 = 105.629059293 X = 105.629059293 Simplifying X = 105.629059293

Subproblem 2

X + -52.08333335 = -53.545725943 Simplifying X + -52.08333335 = -53.545725943 Reorder the terms: -52.08333335 + X = -53.545725943 Solving -52.08333335 + X = -53.545725943 Solving for variable 'X'. Move all terms containing X to the left, all other terms to the right. Add '52.08333335' to each side of the equation. -52.08333335 + 52.08333335 + X = -53.545725943 + 52.08333335 Combine like terms: -52.08333335 + 52.08333335 = 0.00000000 0.00000000 + X = -53.545725943 + 52.08333335 X = -53.545725943 + 52.08333335 Combine like terms: -53.545725943 + 52.08333335 = -1.462392593 X = -1.462392593 Simplifying X = -1.462392593

Solution

The solution to the problem is based on the solutions from the subproblems. X = {105.629059293, -1.462392593}

Solution

X = {105.629059293, -1.462392593}

See similar equations:

| 3(3z+7)=7-2(z-7) | | 6b+3=27 | | -7(5p+2)-44=3(2p+8) | | m-g=q | | 2k+13=5 | | 5v-9=61 | | u^2-18u=23 | | 7x-2=5x^2 | | f(x)=-x^2+x-6 | | -28=1/4x | | 10*x=55*2.5 | | 7x-4=20+x | | 9x-8=9(x+5) | | 5(j-1)=351 | | -4(2x-18)=-48 | | p^2-2p=9 | | 13-m=4 | | a+3k=3+1k | | 8w^2+6w=9w^2 | | 27r^2+69-8=0 | | 8w^2=9w^2 | | m+4=2m+8 | | s^2-24s-37=0 | | 9(x+4)=15(x) | | 9x-4=725 | | 3x-2x+7=1y | | Log[2](3x)+Log[2](4x)=Log[2](21) | | 7/12•n=1/2 | | (y-7)(2y+9)=0 | | 6v(4)= | | (7x+1)(-14x+2)= | | 2n+2=14 |

Equations solver categories